Xu hướng tuần hoàn Bảng_tuần_hoàn

Bài chi tiết: Xu hướng tuần hoàn
Tóm tắt các xu hướng tuần hoàn với mũi tên chỉ chiều tăng.

Cấu hình electron

Bài chi tiết: Cấu hình electron
Thứ tự xấp xỉ với các lớp và phân lớp xếp theo năng lượng tăng dần theo quy tắc Klechkowski.

Cấu hình electron, tức cách phân bố electron quay quay xung quanh các nguyên tử trung hòa, thể hiện một dáng điệu tuần hoàn. Electron chiếm một chuỗi các lớp vỏ electron (đánh dấu bằng các chữ cái in hoa từ K,L,M,N,... ứng với số lượng tử chính n=1,2,3,4,...). Mỗi lớp lại chứa một hoặc nhiều phân lớp (gọi là s,p,d,f và g, ứng với số lượng tử phụ m=0,1,2,3,4). Khi số hiệu nguyên tử tăng, số electron sẽ lần lượt lấp đầy các lớp và phân lớp này theo quy tắc Klechkowski hay quy tắc thứ tự năng lượng thể hiện ở giản đồ hình bên. Trong bảng tuần hoàn, mỗi khi electron bắt đầu chiếm một lớp mới tương ứng với một chu kỳ mới bắt đầu bởi một kim loại kiềm.[30][31]

Vì tính chất cả một nguyên tố chủ yếu phụ thuộc vào cấu hình electron của nó, cho nên những tính chất này cũng thể hiện dáng điệu tuần hoàn. Chính tuần hoàn này đã dẫn tới sự hình thành định luật tuần hoàn (tính chất của các nguyên tố lặp lại với những khoảng đều nhau) và những bảng tuần hoàn đầu tiên, mặc dù biểu hiện của nó chỉ nhận được sự chú ý khi mô hình Bohr về cấu trúc nguyên tử ra đời.[30][31]

Bán kính nguyên tử

Bài chi tiết: Bán kính nguyên tử
Quan hệ giữa số nguyên tử và bán kính nguyên tử[chú thích 4]

Bán kính nguyên tử thay đổi theo cách có thể dự đoán và giải thích được trong toàn bảng tuần hoàn. Ví dụ, bán kính nguyên tử thường giảm dọc theo mỗi chu kỳ của bảng tuần hoàn, từ các kim loại kiềm đến các khí hiếm; và tăng theo chiều từ trên xuống trong mỗi nhóm. Bán kính tăng mạnh giữa khí hiếm ở cuối mỗi chu kỳ và kim loại kiềm ở đầu chu kỳ tiếp theo. Các xu hướng này của bán kính nguyên tử (cũng như nhiều tính chất vật lý và hóa học khác của các nguyên tố) có thể giải thích bằng lý thuyết về lớp vỏ electron của nguyên tử; chúng cung cấp bằng chứng quan trọng cho sự phát triển và xác nhận của cơ học lượng tử.[32]

Các electron trong phân lớp 4f, được lấp đầy dần dần từ xeri (Z = 58) đến ytterbi (Z = 70) tỏ ra không hiệu quả trong việc che chắn điện tích hạt nhân tăng lên từ các phân lớp ra ngoài. Kết quả là các nguyên tố ngay sau nhóm lantan có bán kính nguyên tử nhỏ hơn như dự đoán và hầu như bằng đúng bán kính nguyên tử các nguyên tố nằm ngay phía trên chúng.[33] Hiện tượng này được gọi là sự co ở họ lantan, mổi bật từ đầu họ này tới platin (Z = 78), từ sau đó bị che khuất bởi một hiệu ứng tương đối tính gọi là "hiệu ứng cặp trơ" [chú thích 5][34] Một hiệu ứng có nguồn gốc và biểu hiện tương tự, sự co khối d, xảy ra giữa khối d và khối p và khó nhận thấy hơn so với sự co ở họ lantan.[33]

Năng lượng ion hóa

Bài chi tiết: Năng lượng ion hóa
Năng lượng ion hóa. Mỗi chu kỳ bắt đầu ở mức thấp nhất của các kim loại kiềm, và kết thúc lớn nhất ở các khí hiếm.

Mức năng lượng ion hóa thứ nhất (IE1 hay I1) là năng lượng cần thiết để tách một electron ra khỏi nguyên tử, và các mức năng lượng thứ 2, thứ 3,.. định nghĩa tương tự. Đối với một nguyên tử cho trước, các mức năng lượng ion hóa tiếp theo tăng theo mức độ ion hóa. Các electron ở các orbital càng gần thì chịu lực hút tĩnh điện càng lớn; do đó lượng năng lượng cần thiết để tách electron tăng càng nhiều. Năng lượng ion hóa tăng về phía trên bên phải của bảng tuần hoàn.[34]

Các bước nhảy lớn trong năng lượng ion hóa phân tử liên tiếp xuất hiện khi tách một electron khỏi cấu hình khí hiếm (lớp vỏ bão hòa). Chẳng hạn, năng lượng ion hóa thứ nhất và thứ hai của magiê lần lượt là 738 kJ/mol và 1450 kJ/mol, nhưng năng lượng ion hóa thứ ba, từ Mg2+ (có cấu hình khí hiếm 1s22s22p2) xuống Mg3+(1s22s22p1) đạt tới 7730 kJ/mol.[34]

Độ âm điện

Bài chi tiết: Độ âm điện
Đồ thị thể hiện sự gia tăng độ âm điện so với số nhóm được chọn.

Độ âm điện là khuynh hướng một nguyên tử hút các electron.[35] Độ âm điện của nguyên tử chịu ảnh hưởng của cả số hiệu nguyên tử và khoảng cách giữa các electron hóa trị và các hạt nhân. Độ âm điện càng cao thì khả năng hút electron càng mạnh. Khái niệm này được Linus Pauling đề xuất đầu tiên năm 1932 và thang Pauling vẫn là cơ sở tham chiếu rộng rãi cho độ âm điện tới ngày nay, tuy cũng tồn tại các phương pháp khác.[36] Nhìn chung, độ âm điện tăng từ trái qua phải trong một chu kỳ, và giảm từ trên xuống trong một nhóm. Do đó flo có độ âm điện lớn nhất trong các nguyên tố,[chú thích 6]trong khi Xêsi có độ âm điện thấp nhất, chí ít là theo các nguồn dữ liệu chủ chốt đã có.[17]

Có những ngoại lệ về nguyên tắc chung này. Galli và germani có độ âm điện cao hơn nhômsilic theo thứ tự do sự co khối d. Những nguyên tố của chu kỳ 4 nằm ngay sau dòng đầu tiên của các kim loại chuyển tiếp có bán kính nguyên tử nhỏ bất thường do các electron 3d không che chắn hiệu quả điện tích hạt nhân gia tăng, và kích thước nguyên tử nhỏ hơn tương ứng độ âm điện lớn hơn.[17] Độ âm điện cao bất thường của chì, nhất là khi so sánh với thallibismuth, dường như là một hệ quả của sự chọn lọc dữ liệu công bố (cũng như sự thiếu thốn dữ liệu)-các phương pháp tính toán khác phương pháp Pauling đều thể hiện xu hướng tuần hoàn bình thường của các nguyên tố này.[37]

Ái lực electron

Bài chi tiết: Ái lực electron
Sự phụ thuộc ái lực nguyên tử vào số hiệu nguyên tử.[38] Các giá trị thường tăng theo mỗi chu kì, lên cao nhất ở halogen trước khi giảm dốc đứng ở khí hiếm. Các đỉnh địa phương xuất hiện ở hiđrô, kim loại kiềm thổ và các nguyên tố nhóm 11. Các chỗ lõm địa phương xuất hiện ở kim loại kiềm thổ, nitơ, phôtpho, mangan và rheni.[39]

Ái lực electron của một nguyên tử là lượng năng lượng giải phóng ra khi electron thêm vào nguyên tử trung hòa để tạo thành ion âm. Mặc dù ái lực electron thay đổi với những khoảng rất lớn, người ta vẫn quan sát thấy có những dáng điệu nhất định. Nhìn chung, phi kim có giá trị ái lực electron dương nhiều hơn kim loại, với clo có giá trị ái lực electron cao hơn cả. Ái lực electron của khí hiếm chưa đo đạc được một cách thuyết phục, cho nên chúng có hoặc không có các giá trị âm nhỏ.[40]

Ái lực electron tăng theo chu kỳ. Điều này là do sự lấp đầy lớp vỏ hóa trị của nguyên tử; một nguyên tử nhóm 17 giải phóng nhiều năng lượng hơn nguyên tử nhóm 1 nhận một electron vì nó đạt đến lớp vỏ hóa trị bão hóa và do đó bền hơn.[40] Với cách giải thích tương tự, ta có thể trông đợi quan sát thấy xu hướng giảm ái lực electron từ trên xuống trong một nhóm. Electron thêm vào sẽ rơi vào orbital nằm xa hạt nhân hơn. Do vậy electron này sẽ ít bị hút vào hạt nhân hơn và có thể giải phóng ít năng lượng hơn khi được thêm vào. Tuy nhiên, theo chiều từ trên xuống, khoảng 1/3 các nguyên tố là bất thường, với các nguyên tố nặng hơn có ái lực electron cao hơn so với nguyên tố cùng nhóm mà nhẹ hơn. Phần lớn điều này là do sự che chắn kém bởi các electron lớp d và f. Việc giảm đều đặn ái lực electron chỉ đúng với các nguyên tử nhóm 1.[41]

Tính kim loại

Năng lượng ion hóa, độ âm điện và ái lực electron càng thấp thì tính kim loại càng mạnh và ngược lại, tính phi kim tăng thì các giá trị trên càng lớn.[42] Theo đó, tính kim loại có khuynh hướng giảm trong chu kỳ và, với một số vị trí không đều đặn chủ yếu do khả năng chắn hạt nhân kém bởi electron các phân lớp d và f cùng hiệu ứng tương đối tính,[43] có khuynh hướng tăng dần trong một nhóm. Vì vậy, hầu hết các nguyên tố có tính kim loại mạnh nhất (như xezi và franci) nằm ở góc dưới bên trái của bảng tuần hoàn truyền thống và hầu hết các nguyên tố có tính phi kim mạnh nhất (ôxi, flo, clo) ở góc trên bên phải. Sự kết hợp các xu hướng theo chiều đứng và chiều ngang của tính kim loại giải thích ranh giới gấp khúc chia tách giữa kim loại và phi kim trên một số phiên bản bảng tuần hoàn, và việc xếp nhóm một số nguyên tố nằm cạnh đường ranh này thành á kim.[44][45]

Tài liệu tham khảo

WikiPedia: Bảng_tuần_hoàn http://101-365.com/periodic/giguere.html http://ericscerri23.blogspot.com/ http://www.britannica.com/EBchecked/topic/451929 http://www.britannica.com/EBchecked/topic/603220 http://www.cnn.com/2016/06/08/health/periodic-tabl... http://environmentalchemistry.com/yogi/periodic/ http://ericscerri.com/Michelle-Nat%20Chem.pdf http://cultureofchemistry.fieldofscience.com/2009/... http://www.meta-synthesis.com/webbook//35_pt/pt_da... http://www.meta-synthesis.com/webbook/35_pt/pt_dat...